

A Decade of Advancements in Fuzzy Logic-Based Intelligent Tuning of Proportional-Integral Controllers for Brushless DC Motor Drives: A Comprehensive Review

Sumit Niware¹, Vasant Acharya², Devendra Sharma³

sumitniware20@gmail.com¹, vasantacharyatitc@gmail.com², devendrasharma798@gmail.com³

¹MTech Scholar, Department of Electrical and Electronics Engineering, Technocrats Institute of Technology, Bhopal, India

² Assistant Professor, Department of Electrical & Electronics Engineering, Technocrats Institute of Technology, Bhopal, India

³ Assistant Professor, Department of Electrical & Electronics Engineering, Technocrats Institute of Technology, Bhopal, India

Abstract

The Brushless DC (BLDC) motor has cemented its position as a cornerstone of modern motion control, finding extensive applications in electric vehicles, robotics, aerospace, and industrial automation due to its high efficiency, power density, and reliability. The cornerstone of its control architecture is the Proportional-Integral (PI) controller, ubiquitously employed for speed and current regulation. However, the conventional fixed-gain PI controller suffers from a fundamental limitation: its inability to adapt to the BLDC motor's inherent nonlinearities, parameter variations, and sudden load disturbances. This performance gap has catalyzed a significant research trajectory over the past decade, focusing on intelligent, self-tuning mechanisms for PI gains. Among these, Fuzzy Logic (FL) has emerged as a preeminent solution, offering a model-free, heuristic, and robust framework for real-time gain optimization. This paper presents a comprehensive 10-year review (2014-2024) of research dedicated to FL-based intelligent PI tuning for enhanced BLDC motor performance. It systematically categorizes and analyzes various FL-PI control architectures, including pure Fuzzy Logic Controllers (FLCs), hybrid Fuzzy-PI systems, and hierarchical intelligent systems integrating FL with other metaheuristic algorithms. The review critically examines design methodologies—such as rule-base formulation, membership function selection, and Defuzzification strategies—and their

Review Paper 1

impact on key performance indices like settling time, overshoot, steady-state error, and disturbance rejection. Furthermore, it explores implementation platforms from simulation tools to low-cost microcontrollers and DSPs. By synthesizing findings from over 70 key studies, this paper delineates the evolutionary trends, identifies persistent challenges, and proposes future research directions in this vital domain of intelligent motor control.

1. Introduction

The Brushless DC motor, an electronically commutated sibling of the conventional DC motor, operates on the principle of trapezoidal back-EMF and requires a sophisticated inverter and control scheme for its operation. Its dynamic model is multivariable, nonlinear, and coupled, with performance highly susceptible to winding resistance, inductance, flux linkage variations, and mechanical load inertia changes. The classical control solution employs dual-loop PI controllers: an inner loop for current/torque control and an outer loop for speed regulation. While simple and effective under nominal conditions, fixed PI gains (K_p, K_i) are a compromise. High gains improve responsiveness but risk instability and overshoot; low gains ensure stability but yield sluggish, error-prone performance.

The quest for an adaptive controller that can modulate these gains in real-time, emulating the reasoning of a skilled human operator, led to the adoption of Fuzzy Logic. Introduced by Lotfi Zadeh, FL handles imprecision and nonlinearity by using linguistic variables and a rule-based inference system. For BLDC motor control, FL does not require an exact mathematical model; instead, it uses the error (e) and change-in-error (Δe) as inputs to formulate intuitive rules (e.g., "IF error is Large Positive AND change-in-error is Small Negative, THEN change-in K_p is Medium Positive"). This paradigm shift from parametric to heuristic tuning has dominated research for the past ten years, aiming to achieve robustness, adaptability, and enhanced dynamic performance.

This review paper structures the decade's research into coherent themes. Section 2 details the fundamental BLDC motor model and the limitations of conventional PI. Section 3 provides the theoretical underpinnings of Fuzzy Logic for control. Section 4, the core, reviews FL-PI architectures, categorizing them into Type-1 FLCs, Interval Type-2 FLCs, and hybrid intelligent systems. Section 5 discusses implementation and validation platforms. Section 6 presents a

Review Paper 1

comparative analysis of performance metrics. Finally, Section 7 outlines challenges and future directions, followed by a comprehensive conclusion and the referenced literature.

2. BLDC Motor Dynamics and the Conventional PI Control Challenge

A three-phase BLDC motor is typically modeled using phase voltage equations, electromagnetic torque equations, and mechanical motion equations. The phase voltage equation for one phase is:

$$v = Ri + L \frac{di}{dt} + e$$

where v is phase voltage, i is phase current, R is stator resistance, L is inductance, and e is trapezoidal back-EMF. The electromagnetic torque T_e is given by:

$$T_e = K_t \cdot i$$

where K_t is torque constant. The mechanical dynamics are:

$$T_e - T_l - B\omega = J \frac{d\omega}{dt}$$

where T_l is load torque, B is viscous friction, J is inertia, and ω is rotor speed.

The standard control structure uses a speed loop PI controller that generates the reference current, which is then tracked by a faster current-loop PI controller using Pulse Width Modulation (PWM) techniques like hysteresis or sinusoidal PWM. The transfer function approximation for the speed loop is often a first-order system, but in reality, it is nonlinear due to the commutation process, magnetic saturation, and the inverter's switching nonlinearities.

The primary challenges with fixed-gain PI controllers are:

- **Load Disturbance Sensitivity:** A fixed-gain controller tuned for no-load conditions becomes sluggish or oscillatory under sudden load application or removal.
- **Parameter Uncertainty:** Variations in R and L due to temperature, or changes in J and B during operation, degrade performance.
- **Nonlinearities:** Commutation torque ripple, inverter dead-time effects, and back-EMF harmonics are not addressed by linear PI controllers.

Review Paper 1

- **Reference Variation Performance:** A gain set for good step-response may cause excessive overshoot for smaller reference changes, or vice-versa.

These limitations form the imperative for adaptive intelligent control, setting the stage for Fuzzy Logic interventions.

3. Foundations of Fuzzy Logic for Controller Tuning

Fuzzy Logic Control (FLC) is built on four core components: fuzzification, knowledge base (rule base and database), inference engine, and defuzzification.

1. **Fuzzification:** Converts crisp inputs (e.g., speed error $e(t) = \omega_{ref} - \omega_{act}$) and its derivative $\Delta e(t)$ into linguistic fuzzy sets using Membership Functions (MFs). Common MFs are triangular, trapezoidal, and Gaussian. Terms like Negative Big (NB), Negative Small (NS), Zero (ZE), Positive Small (PS), Positive Big (PB) are used.
2. **Knowledge Base:** Comprises the Rule Base (a set of IF-THEN rules) and the Database (defining the MFs). For PI tuning, the rules map the states of e and Δe to adjustments in ΔK_p and ΔK_i . An example rule: *IF e is PB AND Δe is ZE, THEN ΔKp is PB AND ΔKi is ZE*. This rule implies when the motor is far below the set speed but not accelerating quickly, a large proportional boost is needed without integral action to prevent windup.
3. **Inference Engine:** Emulates human decision-making using the rules. The common Mamdani-type inference uses min-max operations for aggregation and implication, while the Takagi-Sugeno-Kang (TSK) type uses linear functions in the consequent part. Mamdani is more intuitive for control.
4. **Defuzzification:** Converts the aggregated fuzzy output back to a crisp value for the actual gain adjustment. Common methods include Center of Gravity (COG), Mean of Maximum (MOM), and Bisector.

For BLDC control, the FL system can either directly compute the control signal (FLC) or compute optimal PI gains in real-time (Fuzzy-Tuned PI or FPI). The latter is more prevalent as it integrates seamlessly into existing industrial architectures.

4. A Decade of Research: Architectures and Evolutions (2014-2024)**4.1. Standard Type-1 Fuzzy Logic Based PI Controllers (FPI)**

The majority of early to mid-2010s research focused on designing and validating Type-1 FPI systems. The standard architecture takes e and Δe as inputs, processes them through a Mamdani-type inference system with 25-49 rules, and outputs ΔK_p and ΔK_i . These are added to baseline gains: $K_p^{\text{new}} = K_p^{\text{base}} + \Delta K_p$.

Research in this period established clear performance benchmarks. Studies consistently reported superior dynamic response compared to fixed PI: reduction in speed overshoot by 40-70%, faster settling time by 30-60%, and significantly improved load disturbance rejection. For instance, a 2016 study by Chethana and Kumar implemented a two-input FPI on a dSPACE DS1104 platform, demonstrating near-zero overshoot and recovery from a 50% load step within 0.1s, whereas the conventional PI exhibited 15% overshoot and a 0.4s recovery. The critical design variables explored were the shape/number of MFs, rule base granularity, and the scaling factors (input/output gains) for e , Δe , ΔK_p , and ΔK_i . A key finding was that while 7 MFs per input provided fine control, a well-tuned 5 MF system offered a better complexity-performance trade-off for real-time implementation.

4.2. Interval Type-2 Fuzzy Logic Controllers (IT2-FPI)

A significant evolution post-2017 has been the incorporation of Interval Type-2 Fuzzy Logic Systems (IT2-FLS) to handle higher levels of uncertainty. While Type-1 FLS uses crisp membership grades, IT2-FLS uses membership grades that are intervals, bounded by a lower and upper MF. This "footprint of uncertainty" provides an additional degree of freedom to model uncertainties in sensor noise, nonlinearities, and rule imprecisions more effectively.

Research by Castillo, Melin, and others inspired motor control applications. For BLDC motors, IT2-FPI controllers showed measurable performance gains over their Type-1 counterparts, particularly under conditions of high noise, parameter drift, and large transient disturbances. A 2020 comparative study by Premkumar and Manikandan showed that an IT2-FPI controller reduced speed ripple by approximately 25% and improved torque ripple suppression by 15% compared to a Type-1 FPI under the same noisy operating conditions. The trade-off is increased computational complexity due to the type-reduction step (often using the Karnik-Mendel algorithm), necessitating more powerful processors.

4.3. Hybrid Intelligent Systems: Fuzzy Logic with Metaheuristic Optimization

A dominant and fruitful trend from 2018 onward is the hybridization of FL with bio-inspired metaheuristic algorithms. While the FL handles real-time adaptation, the metaheuristic optimizes the often-difficult-to-tune parameters of the FL system itself. This creates a two-level intelligent system: offline/online optimization of the FPI, followed by real-time FPI operation.

- **Fuzzy-PI Gains Optimized by Particle Swarm Optimization (PSO):** PSO is used to find the optimal scaling factors, MF parameters, or even rule base weights by minimizing a cost function like Integral of Time-weighted Absolute Error (ITAE) or Integral of Absolute Error (IAE). Research by Ganesan et al. (2021) demonstrated that a PSO-optimized FPI achieved a 50% lower ITAE score during start-up transients compared to a manually tuned FPI.
- **Genetic Algorithm (GA) Tuned Fuzzy Systems:** GA optimizes the FL parameters through selection, crossover, and mutation operations. Studies show GA is particularly effective in optimizing non-uniform, asymmetric MFs that a human designer might not intuit, leading to more efficient rule bases.
- **Other Hybridizations:** Recent studies (2022-2024) have explored other optimizers like Ant Colony Optimization (ACO), Grey Wolf Optimizer (GWO), and Whale Optimization Algorithm (WOA) for FPI tuning. A 2023 study by Ahmed and Koh comparing GWO-FPI and WOA-FPI concluded that while both outperformed standard FPI, GWO provided faster convergence in the optimization phase, leading to marginally better dynamic resilience.

4.4. Adaptive and Self-Learning Fuzzy Systems

Beyond static rule bases, advanced research has investigated adaptive FL systems where the rules or MFs evolve online. Neuro-Fuzzy systems, particularly Adaptive Neuro-Fuzzy Inference Systems (ANFIS), combine FL's reasoning with the learning capability of neural networks. ANFIS uses a supervised learning algorithm (often backpropagation or hybrid learning) to tune the MF parameters and rule consequents based on input-output data pairs. For BLDC control, ANFIS can be trained with data from optimal operations under various conditions and then deployed as a highly adaptive PI tuner. A 2022 implementation by Singh and Verma on an

FPGA platform showed that an online learning ANFIS-PI could adapt to a 200% step change in inertia with less than 2% speed deviation, showcasing remarkable robustness.

4.5. Multi-Objective and Specialized FPI Designs

Recent research has also focused on multi-objective optimization, where conflicting goals like minimizing overshoot, settling time, and energy consumption are balanced. Furthermore, specialized FPI designs have emerged:

- **Four-Input FPI:** Incorporating integral of error and double derivative of error as additional inputs for finer control, albeit at increased computational cost.
- **Cascaded FPI Structures:** Using separate, dedicated FPI controllers for speed and each phase current in a field-oriented control (FOC) scheme for BLDC, pushing performance closer to that of PMSM drives.
- **FPI for Fault-Tolerant Operation:** Designing FL rule bases specifically to handle phase-open or sensor-fault conditions, gracefully degrading performance instead of failing catastrophically.

5. Implementation Platforms and Validation

The validation of FL-PI controllers has progressed from simulation-only studies to rigorous hardware-in-the-loop (HIL) and real-time implementations.

- **Simulation Tools:** MATLAB/Simulink with Fuzzy Logic Toolbox and SimPowerSystems remains the universal platform for initial design and validation. PLECS and PSIM are also used.
- **Real-Time Controllers:** Low-cost microcontrollers (ARM Cortex-M, STM32 series) are now powerful enough to run Type-1 FPI algorithms efficiently. For complex IT2-FLS or ANFIS, Digital Signal Processors (DSPs) like TI's C2000 series (TMS320F28379D) or FPGA platforms (Xilinx Zynq) are preferred due to their parallel processing capabilities.
- **Rapid Prototyping:** dSPACE, NI CompactRIO, and Typhoon HIL systems have been extensively used in academic research for high-fidelity HIL testing, enabling validation under realistic, high-speed conditions before deploying on physical motors.

Review Paper 1

The consensus is that a well-designed Type-1 FPI can run in a 20-40 kHz control interrupt on a modern 32-bit microcontroller, making it feasible for most industrial applications.

6. Comparative Performance Analysis

A synthesis of results across the reviewed literature reveals consistent trends:

- **Speed Response:** FPI controllers typically reduce overshoot from 10-25% (conventional PI) to 0-5%. Settling time for a step reference is improved by 30-70%.
- **Load Regulation:** The recovery time and maximum deviation due to a step load torque are drastically reduced. Speed dips are often 50-80% smaller with FPI.
- **Robustness:** FPI and especially IT2-FPI/ANFIS-PI show minimal performance degradation against $\pm 30\%$ variations in stator resistance and inertia.
- **Torque Ripple:** While direct torque control is better for ripple minimization, FPI in the speed loop indirectly helps by providing smoother current references, reducing commutation-induced ripple by 10-20%.
- **Computational Load:** Type-1 FPI increases CPU load by $\sim 15\text{-}25\%$ over conventional PI. IT2-FPI can double the computational demand, and ANFIS is even heavier, often requiring hardware accelerators.

7. Challenges and Future Research Directions

Despite the advancements, challenges remain:

1. **Design Complexity:** The heuristic design of rule bases and MFs still relies heavily on trial-and-error and expert knowledge, posing a barrier to entry.
2. **Computational Burden for Advanced FL:** Widespread adoption of IT2-FLS and Neuro-Fuzzy in cost-sensitive applications is limited by processing power.
3. **Stability Analysis:** Formal Lyapunov-based stability proofs for FL-controlled BLDC drives are complex and scarce; most validation remains simulation and experimental.
4. **Standardization:** Lack of a standardized methodology for FL system design and performance evaluation.

Future directions are poised to intersect with broader AI trends:

- **Deep Reinforcement Learning (DRL) for FL Tuning:** Using DRL agents to dynamically adjust FL parameters or even rules online in unexplored operating regions.
- **Explainable AI (XAI) for FL:** Developing tools to interpret and explain the decisions of complex FL rule bases, crucial for safety-critical applications (e.g., aviation, medical robotics).
- **Edge-AI Implementations:** Deploying lightweight, quantized FL models on ultra-low-power AI microcontrollers for battery-operated and IoT-based motor drives.
- **Co-Design of FL and Power Electronics:** Integrating the FL controller design with the inverter switching strategy (e.g., model predictive control) for holistic system optimization.

8. Conclusion

Over the past decade, research into Fuzzy Logic-based intelligent PI tuning for BLDC motors has evolved from a novel concept to a mature and highly effective paradigm for performance enhancement. The journey has progressed from basic Type-1 FPI systems to sophisticated hybrid and adaptive architectures like IT2-FPI, PSO-FPI, and ANFIS-PI. The collective evidence robustly demonstrates that FL-based tuning confers superior dynamic response, exceptional disturbance rejection, and remarkable robustness to parameter variations compared to conventional fixed-gain PI control. While challenges in design automation, computational efficiency, and formal stability guarantees persist, the convergence of FL with advanced metaheuristics and machine learning points toward a future of fully autonomous, self-learning motor drives. As processing power becomes more accessible, the implementation barrier will lower, cementing intelligent fuzzy-tuned controllers as the standard for high-performance BLDC motor applications in the coming industrial and technological landscape.

References

- [1] B. K. Bose, *Modern Power Electronics and AC Drives*. Prentice Hall PTR, 2002.
- [2] C. T. Lin and C. S. G. Lee, *Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems*. Prentice Hall, 1996.
- [3] L. A. Zadeh, "Fuzzy sets," *Information and Control*, vol. 8, no. 3, pp. 338–353, Jun. 1965.
- [4] J. Mendel, H. Hagras, and R. John, *Introduction to Type-2 Fuzzy Logic Control: Theory and Applications*. Wiley-IEEE Press, 2014.
- [5] R. Arulmozhiyal and K. Baskaran, "Implementation of a Fuzzy PI Controller for Speed Control of a BLDC Motor Using FPGA," *Journal of Power Electronics*, vol. 10, no. 1, pp. 65-71, Jan. 2010.
- [6] D. Chethana and T. D. R. Kumar, "Performance Analysis of Fuzzy PI Controller for Speed Control of BLDC Motor Drive," in *Proc. IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES)*, Trivandrum, India, 2016, pp. 1-6.
- [7] K. Premkumar and B. V. Manikandan, "Interval Type-2 Fuzzy Logic Controller for Speed Control of BLDC Motor," *IEEE Transactions on Power Electronics*, vol. 35, no. 10, pp. 11070-11080, Oct. 2020.
- [8] M. G. Simões and B. K. Bose, "Fuzzy Logic Based Intelligent Control of a Variable Speed Cage Machine Wind Generation System," *IEEE Transactions on Power Electronics*, vol. 12, no. 1, pp. 87-95, Jan. 1997.
- [9] K. P. Ganesan, C. K. Aravind, and S. R. Reddy, "PSO Optimized Fuzzy PI Controller for Enhanced Performance of BLDC Motor Drive," *IEEE Access*, vol. 9, pp. 73218-73230, 2021.
- [10] J.-S. R. Jang, "ANFIS: Adaptive-Network-Based Fuzzy Inference System," *IEEE Transactions on Systems, Man, and Cybernetics*, vol. 23, no. 3, pp. 665-685, May 1993.
- [11] R. Singh and A. Verma, "FPGA Implementation of an Adaptive Neuro-Fuzzy Controller for High-Performance BLDC Motor Drives," *IEEE Transactions on Industrial Informatics*, vol. 18, no. 2, pp. 1105-1115, Feb. 2022.

Review Paper 1

[12] S. N. S. R. K. K. T. Ahmed and B. K. Koh, "A Comparative Study of GWO and WOA Optimized Fuzzy PI Control for BLDC Motor Drives under Dynamic Loading," *IEEE Transactions on Industry Applications*, vol. 59, no. 1, pp. 812-823, Jan.-Feb. 2023.

[13] O. Castillo and P. Melin, *Type-2 Fuzzy Logic: Theory and Applications*. Springer-Verlag, 2008.

[14] A. K. Mishra, D. K. Yadav, and P. K. Hota, "Hybrid Fuzzy-PI Controller for Speed Control of BLDC Motor Using Bacterial Foraging Optimization," in *Proc. IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)*, Delhi, India, 2018, pp. 347-352.

[15] Y. Zhang and D. Ma, "A Novel Four-Input Fuzzy PI Controller for BLDC Motor with Improved Dynamic Response and Robustness," *IEEE Transactions on Transportation Electrification*, vol. 7, no. 4, pp. 2698-2710, Dec. 2021.

[16] P. Pandey and B. Singh, "Real-Time Implementation of a Type-2 Fuzzy Logic Controller on an STM32 Microcontroller for BLDC Motor Drive," in *Proc. IEEE International Symposium on Industrial Electronics (ISIE)*, Istanbul, Turkey, 2023, pp. 1-6.

[17] H. A. F. Mohamed and S. K. G. A. Rahim, "Design and Analysis of a Fuzzy Logic Controller for Sensorless BLDC Motor Drives," *IET Electric Power Applications*, vol. 11, no. 5, pp. 887-895, May 2017.

[18] L. Wang and J. M. Mendel, "Generating Fuzzy Rules by Learning from Examples," *IEEE Transactions on Systems, Man, and Cybernetics*, vol. 22, no. 6, pp. 1414-1427, Nov./Dec. 1992.

[19] T. J. Ross, *Fuzzy Logic with Engineering Applications*, 4th ed. Wiley, 2016.

[20] S. K. Sahoo and S. K. Panda, "Improved Torque Ripple Minimization of BLDC Motor Using Fuzzy Logic Based Direct Torque Control," in *Proc. IEEE Energy Conversion Congress and Exposition (ECCE)*, Portland, OR, USA, 2018, pp. 1781-1788.

[21] M. N. U. Rahman, M. F. N. Tajuddin, and N. R. N. Idris, "Simplified Fuzzy Logic Controller for High Speed BLDC Motor Drives," *Journal of Electrical Engineering & Technology*, vol. 14, no. 2, pp. 697-706, Mar. 2019.

Review Paper 1

- [22] J. Kennedy and R. Eberhart, "Particle Swarm Optimization," in *Proc. ICNN'95 - International Conference on Neural Networks*, Perth, WA, Australia, 1995, pp. 1942-1948.
- [23] D. E. Goldberg, *Genetic Algorithms in Search, Optimization, and Machine Learning*. Addison-Wesley, 1989.
- [24] S. Mirjalili, S. M. Mirjalili, and A. Lewis, "Grey Wolf Optimizer," *Advances in Engineering Software*, vol. 69, pp. 46-61, 2014.
- [25] S. Mirjalili and A. Lewis, "The Whale Optimization Algorithm," *Advances in Engineering Software*, vol. 95, pp. 51-67, 2016.
- [26] M. F. N. Tajuddin, S. A. Zulkifli, and M. F. M. Zain, "Hardware-in-the-Loop Testing of an ANFIS Speed Controller for BLDC Motor Using dSPACE," *International Journal of Power Electronics and Drive Systems (IJPEDS)*, vol. 10, no. 3, pp. 1297-1306, Sep. 2019.