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Abstract 

The Brushless DC (BLDC) motor has cemented its position as a cornerstone of modern motion 

control, finding extensive applications in electric vehicles, robotics, aerospace, and industrial 

automation due to its high efficiency, power density, and reliability. The cornerstone of its 

control architecture is the Proportional-Integral (PI) controller, ubiquitously employed for speed 

and current regulation. However, the conventional fixed-gain PI controller suffers from a 

fundamental limitation: its inability to adapt to the BLDC motor's inherent nonlinearities, 

parameter variations, and sudden load disturbances. This performance gap has catalyzed a 

significant research trajectory over the past decade, focusing on intelligent, self-tuning 

mechanisms for PI gains. Among these, Fuzzy Logic (FL) has emerged as a preeminent solution, 

offering a model-free, heuristic, and robust framework for real-time gain optimization. This 

paper presents a comprehensive 10-year review (2014-2024) of research dedicated to FL-based 

intelligent PI tuning for enhanced BLDC motor performance. It systematically categorizes and 

analyzes various FL-PI control architectures, including pure Fuzzy Logic Controllers (FLCs), 

hybrid Fuzzy-PI systems, and hierarchical intelligent systems integrating FL with other 

metaheuristic algorithms. The review critically examines design methodologies—such as rule-

base formulation, membership function selection, and Defuzzification strategies—and their  
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impact on key performance indices like settling time, overshoot, steady-state error, and 

disturbance rejection. Furthermore, it explores implementation platforms from simulation tools 

to low-cost microcontrollers and DSPs. By synthesizing findings from over 70 key studies, this 

paper delineates the evolutionary trends, identifies persistent challenges, and proposes future 

research directions in this vital domain of intelligent motor control. 

1. Introduction 

The Brushless DC motor, an electronically commutated sibling of the conventional DC motor, 

operates on the principle of trapezoidal back-EMF and requires a sophisticated inverter and 

control scheme for its operation. Its dynamic model is multivariable, nonlinear, and coupled, 

with performance highly susceptible to winding resistance, inductance, flux linkage variations, 

and mechanical load inertia changes. The classical control solution employs dual-loop PI 

controllers: an inner loop for current/torque control and an outer loop for speed regulation. 

While simple and effective under nominal conditions, fixed PI gains (Kp ,Ki) are a compromise. 

High gains improve responsiveness but risk instability and overshoot; low gains ensure stability 

but yield sluggish, error-prone performance. 

The quest for an adaptive controller that can modulate these gains in real-time, emulating the 

reasoning of a skilled human operator, led to the adoption of Fuzzy Logic. Introduced by Lotfi 

Zadeh, FL handles imprecision and nonlinearity by using linguistic variables and a rule-based 

inference system. For BLDC motor control, FL does not require an exact mathematical model; 

instead, it uses the error (e) and change-in-error (Δe) as inputs to formulate intuitive rules (e.g., 

"IF error is Large Positive AND change-in-error is Small Negative, THEN change-in Kp is 

Medium Positive"). This paradigm shift from parametric to heuristic tuning has dominated 

research for the past ten years, aiming to achieve robustness, adaptability, and enhanced 

dynamic performance. 

This review paper structures the decade's research into coherent themes. Section 2 details the 

fundamental BLDC motor model and the limitations of conventional PI. Section 3 provides the 

theoretical underpinnings of Fuzzy Logic for control. Section 4, the core, reviews FL-PI 

architectures, categorizing them into Type-1 FLCs, Interval Type-2 FLCs, and hybrid intelligent 

systems. Section 5 discusses implementation and validation platforms. Section 6 presents a 
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comparative analysis of performance metrics. Finally, Section 7 outlines challenges and future 

directions, followed by a comprehensive conclusion and the referenced literature. 

2. BLDC Motor Dynamics and the Conventional PI Control Challenge 

A three-phase BLDC motor is typically modeled using phase voltage equations, electromagnetic 

torque equations, and mechanical motion equations. The phase voltage equation for one phase 

is: 

where v is phase voltage, i is phase current, R is stator resistance, L is inductance, and e is 

trapezoidal back-EMF. The electromagnetic torque Te is given by: 

where Kt is torque constant. The mechanical dynamics are: 

where Tl is load torque, B is viscous friction, J is inertia, and ω is rotor speed. 

The standard control structure uses a speed loop PI controller that generates the reference 

current, which is then tracked by a faster current-loop PI controller using Pulse Width 

Modulation (PWM) techniques like hysteresis or sinusoidal PWM. The transfer function 

approximation for the speed loop is often a first-order system, but in reality, it is nonlinear due 

to the commutation process, magnetic saturation, and the inverter's switching nonlinearities. 

The primary challenges with fixed-gain PI controllers are: 

 Load Disturbance Sensitivity: A fixed-gain controller tuned for no-load conditions 

becomes sluggish or oscillatory under sudden load application or removal. 

 Parameter Uncertainty: Variations in RR and LL due to temperature, or changes 

in JJ and BB during operation, degrade performance. 

 Nonlinearities: Commutation torque ripple, inverter dead-time effects, and back-EMF 

harmonics are not addressed by linear PI controllers. 
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 Reference Variation Performance: A gain set for good step-response may cause 

excessive overshoot for smaller reference changes, or vice-versa. 

These limitations form the imperative for adaptive intelligent control, setting the stage for Fuzzy 

Logic interventions. 

3. Foundations of Fuzzy Logic for Controller Tuning 

Fuzzy Logic Control (FLC) is built on four core components: fuzzification, knowledge base 

(rule base and database), inference engine, and defuzzification. 

1. Fuzzification: Converts crisp inputs (e.g., speed error e(t) = ωref − ωact) and its 

derivative Δe(t) into linguistic fuzzy sets using Membership Functions (MFs). 

Common MFs are triangular, trapezoidal, and Gaussian. Terms like Negative Big (NB), 

Negative Small (NS), Zero (ZE), Positive Small (PS), Positive Big (PB) are used. 

2. Knowledge Base: Comprises the Rule Base (a set of IF-THEN rules) and the Database 

(defining the MFs). For PI tuning, the rules map the states of e and Δe to adjustments 

in ΔKp and ΔKi. An example rule: IF e is PB AND Δe is ZE, THEN ΔKp is PB AND 

ΔKi is ZE. This rule implies when the motor is far below the set speed but not 

accelerating quickly, a large proportional boost is needed without integral action to 

prevent windup. 

3. Inference Engine: Emulates human decision-making using the rules. The common 

Mamdani-type inference uses min-max operations for aggregation and implication, 

while the Takagi-Sugeno-Kang (TSK) type uses linear functions in the consequent part. 

Mamdani is more intuitive for control. 

4. Defuzzification: Converts the aggregated fuzzy output back to a crisp value for the 

actual gain adjustment. Common methods include Center of Gravity (COG), Mean of 

Maximum (MOM), and Bisector. 

For BLDC control, the FL system can either directly compute the control signal (FLC) or 

compute optimal PI gains in real-time (Fuzzy-Tuned PI or FPI). The latter is more prevalent as 

it integrates seamlessly into existing industrial architectures. 
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4. A Decade of Research: Architectures and Evolutions (2014-2024) 

4.1. Standard Type-1 Fuzzy Logic Based PI Controllers (FPI) 

The majority of early to mid-2010s research focused on designing and validating Type-1 FPI 

systems. The standard architecture takes e and Δe as inputs, processes them through a 

Mamdani-type inference system with 25-49 rules, and outputs ΔKp and ΔKi. These are added 

to baseline gains: Kp
new = Kp

base + ΔKp. 

Research in this period established clear performance benchmarks. Studies consistently reported 

superior dynamic response compared to fixed PI: reduction in speed overshoot by 40-70%, 

faster settling time by 30-60%, and significantly improved load disturbance rejection. For 

instance, a 2016 study by Chethana and Kumar implemented a two-input FPI on a dSPACE 

DS1104 platform, demonstrating near-zero overshoot and recovery from a 50% load step within 

0.1s, whereas the conventional PI exhibited 15% overshoot and a 0.4s recovery. The critical 

design variables explored were the shape/number of MFs, rule base granularity, and the scaling 

factors (input/output gains) for e, Δe, ΔKp, and ΔKi. A key finding was that while 7 MFs per 

input provided fine control, a well-tuned 5 MF system offered a better complexity-performance 

trade-off for real-time implementation. 

4.2. Interval Type-2 Fuzzy Logic Controllers (IT2-FPI) 

A significant evolution post-2017 has been the incorporation of Interval Type-2 Fuzzy Logic 

Systems (IT2-FLS) to handle higher levels of uncertainty. While Type-1 FLS uses crisp 

membership grades, IT2-FLS uses membership grades that are intervals, bounded by a lower 

and upper MF. This "footprint of uncertainty" provides an additional degree of freedom to model 

uncertainties in sensor noise, nonlinearities, and rule imprecisions more effectively. 

Research by Castillo, Melin, and others inspired motor control applications. For BLDC motors, 

IT2-FPI controllers showed measurable performance gains over their Type-1 counterparts, 

particularly under conditions of high noise, parameter drift, and large transient disturbances. A 

2020 comparative study by Premkumar and Manikandan showed that an IT2-FPI controller 

reduced speed ripple by approximately 25% and improved torque ripple suppression by 15% 

compared to a Type-1 FPI under the same noisy operating conditions. The trade-off is increased 

computational complexity due to the type-reduction step (often using the Karnik-Mendel 

algorithm), necessitating more powerful processors. 
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4.3. Hybrid Intelligent Systems: Fuzzy Logic with Metaheuristic Optimization 

A dominant and fruitful trend from 2018 onward is the hybridization of FL with bio-inspired 

metaheuristic algorithms. While the FL handles real-time adaptation, the metaheuristic 

optimizes the often-difficult-to-tune parameters of the FL system itself. This creates a two-level 

intelligent system: offline/online optimization of the FPI, followed by real-time FPI operation. 

 Fuzzy-PI Gains Optimized by Particle Swarm Optimization (PSO): PSO is used to 

find the optimal scaling factors, MF parameters, or even rule base weights by 

minimizing a cost function like Integral of Time-weighted Absolute Error (ITAE) or 

Integral of Absolute Error (IAE). Research by Ganesan et al. (2021) demonstrated that 

a PSO-optimized FPI achieved a 50% lower ITAE score during start-up transients 

compared to a manually tuned FPI. 

 Genetic Algorithm (GA) Tuned Fuzzy Systems: GA optimizes the FL parameters 

through selection, crossover, and mutation operations. Studies show GA is particularly 

effective in optimizing non-uniform, asymmetric MFs that a human designer might not 

intuit, leading to more efficient rule bases. 

 Other Hybridizations: Recent studies (2022-2024) have explored other optimizers 

like Ant Colony Optimization (ACO), Grey Wolf Optimizer (GWO), and Whale 

Optimization Algorithm (WOA) for FPI tuning. A 2023 study by Ahmed and Koh 

comparing GWO-FPI and WOA-FPI concluded that while both outperformed standard 

FPI, GWO provided faster convergence in the optimization phase, leading to marginally 

better dynamic resilience. 

4.4. Adaptive and Self-Learning Fuzzy Systems 

Beyond static rule bases, advanced research has investigated adaptive FL systems where the 

rules or MFs evolve online. Neuro-Fuzzy systems, particularly Adaptive Neuro-Fuzzy Inference 

Systems (ANFIS), combine FL's reasoning with the learning capability of neural networks. 

ANFIS uses a supervised learning algorithm (often backpropagation or hybrid learning) to tune 

the MF parameters and rule consequents based on input-output data pairs. For BLDC control, 

ANFIS can be trained with data from optimal operations under various conditions and then 

deployed as a highly adaptive PI tuner. A 2022 implementation by Singh and Verma on an 



ISSN: 2583-5637 (Online) 

International journal of Inventive Research in Science and Technology  

Volume 4 Issue 11 November 2025 

Review Paper 1 

FPGA platform showed that an online learning ANFIS-PI could adapt to a 200% step change in 

inertia with less than 2% speed deviation, showcasing remarkable robustness. 

4.5. Multi-Objective and Specialized FPI Designs 

Recent research has also focused on multi-objective optimization, where conflicting goals like 

minimizing overshoot, settling time, and energy consumption are balanced. Furthermore, 

specialized FPI designs have emerged: 

 Four-Input FPI: Incorporating integral of error and double derivative of error as 

additional inputs for finer control, albeit at increased computational cost. 

 Cascaded FPI Structures: Using separate, dedicated FPI controllers for speed and 

each phase current in a field-oriented control (FOC) scheme for BLDC, pushing 

performance closer to that of PMSM drives. 

 FPI for Fault-Tolerant Operation: Designing FL rule bases specifically to handle 

phase-open or sensor-fault conditions, gracefully degrading performance instead of 

failing catastrophically. 

5. Implementation Platforms and Validation 

The validation of FL-PI controllers has progressed from simulation-only studies to rigorous 

hardware-in-the-loop (HIL) and real-time implementations. 

 Simulation Tools: MATLAB/Simulink with Fuzzy Logic Toolbox and 

SimPowerSystems remains the universal platform for initial design and validation. 

PLECS and PSIM are also used. 

 Real-Time Controllers: Low-cost microcontrollers (ARM Cortex-M, STM32 series) 

are now powerful enough to run Type-1 FPI algorithms efficiently. For complex IT2-

FLS or ANFIS, Digital Signal Processors (DSPs) like TI's C2000 series 

(TMS320F28379D) or FPGA platforms (Xilinx Zynq) are preferred due to their parallel 

processing capabilities. 

 Rapid Prototyping: dSPACE, NI CompactRIO, and Typhoon HIL systems have been 

extensively used in academic research for high-fidelity HIL testing, enabling validation 

under realistic, high-speed conditions before deploying on physical motors. 
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The consensus is that a well-designed Type-1 FPI can run in a 20-40 kHz control interrupt on 

a modern 32-bit microcontroller, making it feasible for most industrial applications. 

6. Comparative Performance Analysis 

A synthesis of results across the reviewed literature reveals consistent trends: 

 Speed Response: FPI controllers typically reduce overshoot from 10-25% 

(conventional PI) to 0-5%. Settling time for a step reference is improved by 30-70%. 

 Load Regulation: The recovery time and maximum deviation due to a step load torque 

are drastically reduced. Speed dips are often 50-80% smaller with FPI. 

 Robustness: FPI and especially IT2-FPI/ANFIS-PI show minimal performance 

degradation against ±30% variations in stator resistance and inertia. 

 Torque Ripple: While direct torque control is better for ripple minimization, FPI in 

the speed loop indirectly helps by providing smoother current references, reducing 

commutation-induced ripple by 10-20%. 

 Computational Load: Type-1 FPI increases CPU load by ~15-25% over conventional 

PI. IT2-FPI can double the computational demand, and ANFIS is even heavier, often 

requiring hardware accelerators. 

7. Challenges and Future Research Directions 

Despite the advancements, challenges remain: 

1. Design Complexity: The heuristic design of rule bases and MFs still relies heavily on 

trial-and-error and expert knowledge, posing a barrier to entry. 

2. Computational Burden for Advanced FL: Widespread adoption of IT2-FLS and 

Neuro-Fuzzy in cost-sensitive applications is limited by processing power. 

3. Stability Analysis: Formal Lyapunov-based stability proofs for FL-controlled BLDC 

drives are complex and scarce; most validation remains simulation and experimental. 

4. Standardization: Lack of a standardized methodology for FL system design and 

performance evaluation. 
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Future directions are poised to intersect with broader AI trends: 

 Deep Reinforcement Learning (DRL) for FL Tuning: Using DRL agents to 

dynamically adjust FL parameters or even rules online in unexplored operating regions. 

 Explainable AI (XAI) for FL: Developing tools to interpret and explain the decisions 

of complex FL rule bases, crucial for safety-critical applications (e.g., aviation, medical 

robotics). 

 Edge-AI Implementations: Deploying lightweight, quantized FL models on ultra-

low-power AI microcontrollers for battery-operated and IoT-based motor drives. 

 Co-Design of FL and Power Electronics: Integrating the FL controller design with 

the inverter switching strategy (e.g., model predictive control) for holistic system 

optimization. 

8. Conclusion 

Over the past decade, research into Fuzzy Logic-based intelligent PI tuning for BLDC motors 

has evolved from a novel concept to a mature and highly effective paradigm for performance 

enhancement. The journey has progressed from basic Type-1 FPI systems to sophisticated 

hybrid and adaptive architectures like IT2-FPI, PSO-FPI, and ANFIS-PI. The collective 

evidence robustly demonstrates that FL-based tuning confers superior dynamic response, 

exceptional disturbance rejection, and remarkable robustness to parameter variations compared 

to conventional fixed-gain PI control. While challenges in design automation, computational 

efficiency, and formal stability guarantees persist, the convergence of FL with advanced 

metaheuristics and machine learning points toward a future of fully autonomous, self-learning 

motor drives. As processing power becomes more accessible, the implementation barrier will 

lower, cementing intelligent fuzzy-tuned controllers as the standard for high-performance 

BLDC motor applications in the coming industrial and technological landscape. 
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