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Abstract

The Brushless DC (BLDC) motor has cemented its position as a cornerstone of modern motion
control, finding extensive applications in electric vehicles, robotics, aerospace, and industrial
automation due to its high efficiency, power density, and reliability. The cornerstone of its
control architecture is the Proportional-Integral (P1) controller, ubiquitously employed for speed
and current regulation. However, the conventional fixed-gain PI controller suffers from a
fundamental limitation: its inability to adapt to the BLDC motor's inherent nonlinearities,
parameter variations, and sudden load disturbances. This performance gap has catalyzed a
significant research trajectory over the past decade, focusing on intelligent, self-tuning
mechanisms for Pl gains. Among these, Fuzzy Logic (FL) has emerged as a preeminent solution,
offering a model-free, heuristic, and robust framework for real-time gain optimization. This
paper presents a comprehensive 10-year review (2014-2024) of research dedicated to FL-based
intelligent P1 tuning for enhanced BLDC motor performance. It systematically categorizes and
analyzes various FL-PI control architectures, including pure Fuzzy Logic Controllers (FLCs),
hybrid Fuzzy-Pl systems, and hierarchical intelligent systems integrating FL with other
metaheuristic algorithms. The review critically examines design methodologies—such as rule-

base formulation, membership function selection, and Defuzzification strategies—and their



ISSN: 2583-5637 (Online)
International journal of Inventive Research in Science and Technology
Volume 4 Issue 11 November 2025
Review Paper 1

impact on key performance indices like settling time, overshoot, steady-state error, and
disturbance rejection. Furthermore, it explores implementation platforms from simulation tools
to low-cost microcontrollers and DSPs. By synthesizing findings from over 70 key studies, this
paper delineates the evolutionary trends, identifies persistent challenges, and proposes future

research directions in this vital domain of intelligent motor control.
1. Introduction

The Brushless DC motor, an electronically commutated sibling of the conventional DC motor,
operates on the principle of trapezoidal back-EMF and requires a sophisticated inverter and
control scheme for its operation. Its dynamic model is multivariable, nonlinear, and coupled,
with performance highly susceptible to winding resistance, inductance, flux linkage variations,
and mechanical load inertia changes. The classical control solution employs dual-loop Pl

controllers: an inner loop for current/torque control and an outer loop for speed regulation.
While simple and effective under nominal conditions, fixed P1 gains (K, ,Kj) are a compromise.

High gains improve responsiveness but risk instability and overshoot; low gains ensure stability
but yield sluggish, error-prone performance.

The quest for an adaptive controller that can modulate these gains in real-time, emulating the
reasoning of a skilled human operator, led to the adoption of Fuzzy Logic. Introduced by Lotfi
Zadeh, FL handles imprecision and nonlinearity by using linguistic variables and a rule-based
inference system. For BLDC motor control, FL does not require an exact mathematical model;
instead, it uses the error (e) and change-in-error (Ae) as inputs to formulate intuitive rules (e.g.,
"IF error is Large Positive AND change-in-error is Small Negative, THEN change-in Kp is
Medium Positive"). This paradigm shift from parametric to heuristic tuning has dominated
research for the past ten years, aiming to achieve robustness, adaptability, and enhanced

dynamic performance.

This review paper structures the decade's research into coherent themes. Section 2 details the
fundamental BLDC motor model and the limitations of conventional PI. Section 3 provides the
theoretical underpinnings of Fuzzy Logic for control. Section 4, the core, reviews FL-PI
architectures, categorizing them into Type-1 FLCs, Interval Type-2 FLCs, and hybrid intelligent

systems. Section 5 discusses implementation and validation platforms. Section 6 presents a
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comparative analysis of performance metrics. Finally, Section 7 outlines challenges and future

directions, followed by a comprehensive conclusion and the referenced literature.
2. BLDC Motor Dynamics and the Conventional Pl Control Challenge

A three-phase BLDC motor is typically modeled using phase voltage equations, electromagnetic
torque equations, and mechanical motion equations. The phase voltage equation for one phase
is:

di

a + e

where V is phase voltage, i is phase current, R is stator resistance, L is inductance, and € is

v=Ri+ L

trapezoidal back-EMF. The electromagnetic torque T is given by:

Te:Kt'?:

where K is torque constant. The mechanical dynamics are:

dw
T, T, — Bw=J%>
PP

where Ty is load torque, B is viscous friction, J is inertia, and  is rotor speed.

The standard control structure uses a speed loop Pl controller that generates the reference
current, which is then tracked by a faster current-loop Pl controller using Pulse Width
Modulation (PWM) techniques like hysteresis or sinusoidal PWM. The transfer function
approximation for the speed loop is often a first-order system, but in reality, it is nonlinear due

to the commutation process, magnetic saturation, and the inverter's switching nonlinearities.
The primary challenges with fixed-gain PI controllers are:

e Load Disturbance Sensitivity: A fixed-gain controller tuned for no-load conditions

becomes sluggish or oscillatory under sudden load application or removal.

o Parameter Uncertainty: Variations in RR and LL due to temperature, or changes

in JJ and BB during operation, degrade performance.

e Nonlinearities: Commutation torque ripple, inverter dead-time effects, and back-EMF

harmonics are not addressed by linear P1 controllers.
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o Reference Variation Performance: A gain set for good step-response may cause

excessive overshoot for smaller reference changes, or vice-versa.

These limitations form the imperative for adaptive intelligent control, setting the stage for Fuzzy

Logic interventions.
3. Foundations of Fuzzy Logic for Controller Tuning

Fuzzy Logic Control (FLC) is built on four core components: fuzzification, knowledge base

(rule base and database), inference engine, and defuzzification.

1. Fuzzification: Converts crisp inputs (e.g., speed error €(t) = ref = Wact) and its

derivative Ae(t) into linguistic fuzzy sets using Membership Functions (MFs).

Common MFs are triangular, trapezoidal, and Gaussian. Terms like Negative Big (NB),
Negative Small (NS), Zero (ZE), Positive Small (PS), Positive Big (PB) are used.

2. Knowledge Base: Comprises the Rule Base (a set of IF-THEN rules) and the Database
(defining the MFs). For PI tuning, the rules map the states of e and Ae to adjustments
in AKp and AKi. An example rule: IF e is PB AND Ae is ZE, THEN AKp is PB AND
AKi is ZE. This rule implies when the motor is far below the set speed but not
accelerating quickly, a large proportional boost is needed without integral action to

prevent windup.

3. Inference Engine: Emulates human decision-making using the rules. The common
Mamdani-type inference uses min-max operations for aggregation and implication,
while the Takagi-Sugeno-Kang (TSK) type uses linear functions in the consequent part.

Mamdani is more intuitive for control.

4. Defuzzification: Converts the aggregated fuzzy output back to a crisp value for the
actual gain adjustment. Common methods include Center of Gravity (COG), Mean of
Maximum (MOM), and Bisector.

For BLDC control, the FL system can either directly compute the control signal (FLC) or
compute optimal PI gains in real-time (Fuzzy-Tuned PI or FPI). The latter is more prevalent as

it integrates seamlessly into existing industrial architectures.
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4. A Decade of Research: Architectures and Evolutions (2014-2024)

4.1. Standard Type-1 Fuzzy Logic Based PI Controllers (FPI)

The majority of early to mid-2010s research focused on designing and validating Type-1 FPI
systems. The standard architecture takese and Ae as inputs, processes them through a
Mamdani-type inference system with 25-49 rules, and outputs AKp and AKi. These are added

to baseline gains: K" = K" + AK,.

Research in this period established clear performance benchmarks. Studies consistently reported
superior dynamic response compared to fixed PI: reduction in speed overshoot by 40-70%,
faster settling time by 30-60%, and significantly improved load disturbance rejection. For
instance, a 2016 study by Chethana and Kumar implemented a two-input FPI on a dSPACE
DS1104 platform, demonstrating near-zero overshoot and recovery from a 50% load step within
0.1s, whereas the conventional Pl exhibited 15% overshoot and a 0.4s recovery. The critical
design variables explored were the shape/number of MFs, rule base granularity, and the scaling
factors (input/output gains) for e, Ae, AKp, and AKi. A key finding was that while 7 MFs per
input provided fine control, a well-tuned 5 MF system offered a better complexity-performance

trade-off for real-time implementation.
4.2. Interval Type-2 Fuzzy Logic Controllers (IT2-FPI)

A significant evolution post-2017 has been the incorporation of Interval Type-2 Fuzzy Logic
Systems (IT2-FLS) to handle higher levels of uncertainty. While Type-1 FLS uses crisp
membership grades, IT2-FLS uses membership grades that are intervals, bounded by a lower
and upper MF. This "footprint of uncertainty" provides an additional degree of freedom to model

uncertainties in sensor noise, nonlinearities, and rule imprecisions more effectively.

Research by Castillo, Melin, and others inspired motor control applications. For BLDC motors,
IT2-FPI controllers showed measurable performance gains over their Type-1 counterparts,
particularly under conditions of high noise, parameter drift, and large transient disturbances. A
2020 comparative study by Premkumar and Manikandan showed that an IT2-FPI controller
reduced speed ripple by approximately 25% and improved torque ripple suppression by 15%
compared to a Type-1 FPI under the same noisy operating conditions. The trade-off is increased
computational complexity due to the type-reduction step (often using the Karnik-Mendel

algorithm), necessitating more powerful processors.
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4.3. Hybrid Intelligent Systems: Fuzzy Logic with Metaheuristic Optimization

A dominant and fruitful trend from 2018 onward is the hybridization of FL with bio-inspired
metaheuristic algorithms. While the FL handles real-time adaptation, the metaheuristic
optimizes the often-difficult-to-tune parameters of the FL system itself. This creates a two-level

intelligent system: offline/online optimization of the FPI, followed by real-time FPI operation.

e Fuzzy-PIl Gains Optimized by Particle Swarm Optimization (PSO): PSO is used to
find the optimal scaling factors, MF parameters, or even rule base weights by
minimizing a cost function like Integral of Time-weighted Absolute Error (ITAE) or
Integral of Absolute Error (IAE). Research by Ganesan et al. (2021) demonstrated that
a PSO-optimized FPI achieved a 50% lower ITAE score during start-up transients

compared to a manually tuned FPI.

e Genetic Algorithm (GA) Tuned Fuzzy Systems: GA optimizes the FL parameters
through selection, crossover, and mutation operations. Studies show GA is particularly
effective in optimizing non-uniform, asymmetric MFs that a human designer might not

intuit, leading to more efficient rule bases.

e Other Hybridizations: Recent studies (2022-2024) have explored other optimizers
like Ant Colony Optimization (ACO), Grey Wolf Optimizer (GWO), and Whale
Optimization Algorithm (WOA) for FPI tuning. A 2023 study by Ahmed and Koh
comparing GWO-FPI and WOA-FPI concluded that while both outperformed standard
FP1, GWO provided faster convergence in the optimization phase, leading to marginally

better dynamic resilience.
4.4. Adaptive and Self-Learning Fuzzy Systems

Beyond static rule bases, advanced research has investigated adaptive FL systems where the
rules or MFs evolve online. Neuro-Fuzzy systems, particularly Adaptive Neuro-Fuzzy Inference
Systems (ANFIS), combine FL's reasoning with the learning capability of neural networks.
ANFIS uses a supervised learning algorithm (often backpropagation or hybrid learning) to tune
the MF parameters and rule consequents based on input-output data pairs. For BLDC control,
ANFIS can be trained with data from optimal operations under various conditions and then

deployed as a highly adaptive PI tuner. A 2022 implementation by Singh and Verma on an
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FPGA platform showed that an online learning ANFIS-PI could adapt to a 200% step change in

inertia with less than 2% speed deviation, showcasing remarkable robustness.

4.5. Multi-Objective and Specialized FPI Designs

Recent research has also focused on multi-objective optimization, where conflicting goals like

minimizing overshoot, settling time, and energy consumption are balanced. Furthermore,

specialized FPI designs have emerged:

Four-Input FPI: Incorporating integral of error and double derivative of error as
additional inputs for finer control, albeit at increased computational cost.

Cascaded FPI Structures: Using separate, dedicated FPI controllers for speed and
each phase current in a field-oriented control (FOC) scheme for BLDC, pushing

performance closer to that of PMSM drives.

FPI for Fault-Tolerant Operation: Designing FL rule bases specifically to handle
phase-open or sensor-fault conditions, gracefully degrading performance instead of

failing catastrophically.

5. Implementation Platforms and Validation

The validation of FL-PI controllers has progressed from simulation-only studies to rigorous

hardware-in-the-loop (HIL) and real-time implementations.

Simulation  Tools: MATLAB/Simulink with  Fuzzy Logic Toolbox and
SimPowerSystems remains the universal platform for initial design and validation.
PLECS and PSIM are also used.

Real-Time Controllers: Low-cost microcontrollers (ARM Cortex-M, STM32 series)
are now powerful enough to run Type-1 FPI algorithms efficiently. For complex I1T2-
FLS or ANFIS, Digital Signal Processors (DSPs) like TI's C2000 series
(TMS320F28379D) or FPGA platforms (Xilinx Zynq) are preferred due to their parallel

processing capabilities.

Rapid Prototyping: dSPACE, NI CompactRIO, and Typhoon HIL systems have been
extensively used in academic research for high-fidelity HIL testing, enabling validation

under realistic, high-speed conditions before deploying on physical motors.
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The consensus is that a well-designed Type-1 FPI can run in a 20-40 kHz control interrupt on

a modern 32-bit microcontroller, making it feasible for most industrial applications.

6. Comparative Performance Analysis

A synthesis of results across the reviewed literature reveals consistent trends:

Speed Response: FPI controllers typically reduce overshoot from 10-25%

(conventional PI) to 0-5%. Settling time for a step reference is improved by 30-70%.

Load Regulation: The recovery time and maximum deviation due to a step load torque
are drastically reduced. Speed dips are often 50-80% smaller with FPI.

Robustness: FP1 and especially 1T2-FPI/ANFIS-PI show minimal performance

degradation against £30% variations in stator resistance and inertia.

Torque Ripple: While direct torque control is better for ripple minimization, FPI in
the speed loop indirectly helps by providing smoother current references, reducing

commutation-induced ripple by 10-20%.

Computational Load: Type-1 FPI increases CPU load by ~15-25% over conventional
Pl. IT2-FPI can double the computational demand, and ANFIS is even heavier, often

requiring hardware accelerators.

7. Challenges and Future Research Directions

Despite the advancements, challenges remain:

1. Design Complexity: The heuristic design of rule bases and MFs still relies heavily on

trial-and-error and expert knowledge, posing a barrier to entry.

Computational Burden for Advanced FL: Widespread adoption of IT2-FLS and

Neuro-Fuzzy in cost-sensitive applications is limited by processing power.

Stability Analysis: Formal Lyapunov-based stability proofs for FL-controlled BLDC

drives are complex and scarce; most validation remains simulation and experimental.

Standardization: Lack of a standardized methodology for FL system design and

performance evaluation.
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Future directions are poised to intersect with broader Al trends:

o Deep Reinforcement Learning (DRL) for FL Tuning: Using DRL agents to
dynamically adjust FL parameters or even rules online in unexplored operating regions.

« Explainable Al (XAl) for FL: Developing tools to interpret and explain the decisions
of complex FL rule bases, crucial for safety-critical applications (e.g., aviation, medical

robotics).

o Edge-Al Implementations: Deploying lightweight, quantized FL models on ultra-
low-power Al microcontrollers for battery-operated and 10T-based motor drives.

e Co-Design of FL and Power Electronics: Integrating the FL controller design with
the inverter switching strategy (e.g., model predictive control) for holistic system

optimization.
8. Conclusion

Over the past decade, research into Fuzzy Logic-based intelligent PI tuning for BLDC motors
has evolved from a novel concept to a mature and highly effective paradigm for performance
enhancement. The journey has progressed from basic Type-1 FPI systems to sophisticated
hybrid and adaptive architectures like IT2-FPIl, PSO-FPI, and ANFIS-PIl. The collective
evidence robustly demonstrates that FL-based tuning confers superior dynamic response,
exceptional disturbance rejection, and remarkable robustness to parameter variations compared
to conventional fixed-gain Pl control. While challenges in design automation, computational
efficiency, and formal stability guarantees persist, the convergence of FL with advanced
metaheuristics and machine learning points toward a future of fully autonomous, self-learning
motor drives. As processing power becomes more accessible, the implementation barrier will
lower, cementing intelligent fuzzy-tuned controllers as the standard for high-performance
BLDC motor applications in the coming industrial and technological landscape.
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